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VIBRATION AND STABILITY OF CRACKED
RECTANGULAR PLATESt

B. STAHq and L. M. KEER&

Northwestern University, Evanston, JIIinois

Abstract-The present paper deals with eigenvalue problems ofcracked rectangular plates. Vibration and buckling
problems are solved for a plate with a crack emanating from one edge and for a plate with a centrally located
internal crack. The problems are formulated as dual series equations and reduced to homogeneous Fredholm
integral equations ofthe second kind. The singularity ofthe solution in each case is isolated and treated analytically.
Numerical results for the natural frequencies and moment distributions are compared with the work of other
investigators. Vibration and buckling mode shapes are also illustrated for a cracked plate.

INTRODUCTION

THE objective ofthe present paper is to develop and demonstrate a method for determining
the natural frequencies and buckling loads of rectangular plates with mixed boundary
conditions arising from cracks. The plates are of uniform thickness and are simply supported
along the four outer edges. Two cracked configurations are considered: a stationary crack
penetrating the plate from one edge, and a centrally located internal crack.

Recently, Keer and Sve [lJ have given a rigorous treatment of the symmetric bending ofa
cracked rectangular plate due to a static, uniform, transverse load. They formulated the
problem as dual series equations and used a modification ofthe technique by Westmann and
Yang [2J to obtain a solution in terms of a Fredholm integral equation of the second kind.
Three cases were studied in their paper: two collinear external cracks of equal length, an
internal crack centrally located and a single external crack. The dual series equation solution
techniques presented by Keer and Sve are applied here to corresponding vibration and
buckling problems. In addition, solutions to the more difficult problems associated with
antisymmetric bending are given here.

Avibration analysis ofa cracked rectangular plate has been made by Lynn and Kumbasar
[3J, who used a Green's function approach to obtain a Fredholm integral equation of the
first kind. The subdomain method [4J was employed to satisfy the boundary conditions.
No attempt was made to account for the singularity of the solution. A comparison oftheir
numerical work with results obtained by the present method is made in this paper.

Numerical treatments of plates with mixed boundary conditions are given by Chen and
Pickett [5,6]. A survey of numerical methods for solving plate bending problems has been
made by Leissa et ai. [7]. It was concluded there that discontinuous boundary conditions
are poorly approximated without the use of appropriate singularity functions. The work
in this paper tends to confirm this conclusion.

t Presented at the Third Canadian Congress of Applied Mechanics, the University of Calgary (1971).
~ Currently Senior Research Engineer, AMOCO Production Company, Tulsa, Oklahoma.
§ Professor of Civil Engineering.
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A large amount of literature is available concerning mixed boundary value problems
of infinite plates. Although the present analyses deal with finite plates, the solution of infinite
plate problems provides the correct singularity to be used in the vicinity ofthe mixed con
dition. The local behavior at the point of discontinuity of the boundary conditions must be
the same for both finite and infinite plates. For a plate containing a crack, the nature of the
singularity may be deduced from the paper by Goodier [8J by considering the crack as a
limiting case ofan elliptical hole. The complex variable method as illustrated by Sih et al. [9J
in conjunction with the paper by Yu [1OJ may also be used to deduce the nature of the
singularity. In addition, the Fadle eigenfunction expansion technique employed by Williams
[11, 12J may be used. From these methods, it is found that the moment stress resultant is
singular as the inverse square root of the distance from the base of the crack. It will be
shown that these singularities are indeed properly incorporated.

The present work is restricted to elementary plate theory, with the notation given by
Timoshenko and Woinowsky-Krieger [13]. Since the plates are finite, the problems are
formulated by means of Fourier series. The mixed boundary conditions lead to dual series
equations with a weight function. The dual series equations are then converted by means of
certain integral representations to a homogeneous Fredholm integral equation of the
second kind from which the natural frequencies, the buckling parameter and the auxiliary
function e(p) are determined. The eigenfunctions (mode shapes) may be computed by use of
e(p).

PLATE WITH CRACK EMANATING FROM ONE EDGE

In this section problems involving the vibration and stability of plates with a crack
emanating from one edge will be investigated. The various problems can also be considered
as internal crack problems with an appropriate continuation of the plate. The partial
differential equation which governs the free transverse motion wo(x, Y, t) ofa plate as shown
in Fig. l(a)t is given by

Letting

Wo(x, Y, t) = w(x, y) exp(iQt),

the time dependence can be eliminated so as to obtain

(1)

(2)

(3)

Utilizing the Levy-Nadai approach [13J for plates simply supported on two opposite
edges, substitution of the partial expansion

00

w = L Ym(y) sin(mx)
m= 1.2 •...

(4)

t The coordinates and dimensions shown on the plate geometry figures are scaled by the factor n/a, where a
is the actual plate length. Actual (barred) coordinates and dimensions are obtained by use of x = ax/n, y = ay/n.
1) = ab/n, C = ac/n and c, = ac,/n.
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FIG. I. Geometry of cracked plates.

into (3) leads to an ordinary differential equation for Ym which has as its general solution

71

where

r 1 = [kn+m
2
]+, j

r2 = [-kn+m2 ]+,

k = [/lID]+.

(6)

The buckling and vibration problems are very similar because the governing differential
equations are almost identical and the same boundary conditions are applicable. Byapply
ing a uniform compressive load T on the edges perpendicular to the crack [see Fig. l(a)],
the governing partial differential equation may be written as

(7)

By use of a partial expansion such as that given by equation (4), an ordinary differential
equation can be developed for Ym which has the solution
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y = n/2b

Pi = [mpy+m2}t

P2 = [-mpy+m2]t
(9)

py = )(T/D).

By comparing equations (8), (9) with (5), (6), it is evident that the buckling problem can be
obtained from the vibration problem by redefining r i and r2 according to (9) and by re
placing kQ with mpy.

As is evident from Fig. l(a) for all problems considered in this section, the following
boundary conditions hold:

x = O,n

Os x S n.

(10)

(11 )

Boundary conditions (10), (11) express the fact that the edges x = 0, nand y = ±bare
simply supported. The remaining boundary conditions for each of the problems to be con
sidered are obtained by focusing attention on the line y = O.

(a) Symmetric vibration of plate with crack from one edge

The boundary conditions appropriate to this case of mode shapes symmetric about
y = 0 are given by (10), (11) and the following:

y = 0,

y = 0,

c<xsn

(12)

(13)

y = 0, Os x < c. (14)

Boundary conditions (12), (13) in c < x S n follow from symmetry conditions and (12),
(14) in 0 S x < c arise from the stress free condition on the face of the crack.

By use ofthe partial expansion given in (4), it is seen that (10) is automatically satisfied.
Boundary conditions (11) and (12) lead to the relations

Am = r2[kQ+(I- v)m2]Cmlri [kQ-(I- v)m2J

Bm = - r2[kQ+(1- v)m2] tanh(r1b)Cm/r l [kQ-(I- v)m2J

Dm= -tanh(r2b)Cm·

(15)

(16)

(17)
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The problem is therefore reduced to the determination of the constants Cm' The remaining
boundary conditions (13), (14) are mixed with respect to the slope and moment, and they
are written as the dual series equations

00

I Pm sin(mx) = 0,
m= ',2, ...

(18)

00

I m[I + Fm(O)]Pmsin(mx) = 0,
m= ',2,. ..

O:S;;x<c (19)

(22)

where Pm and Fm(O) are given by

Pm = 2r2kO[kO-(I- v)m2] 'Cm' (20)

1+ Fm(O) = [(1- v)(v+ 3)mkOr' {tanh(r,b)[kO+(I_ v)m2]2
r,

_ tanh(r2b)[kO_(I_V)m2]2}, (21)
r 2

As m -+ 00, the weight function Fm(O) approaches zero as m- 4
. The constant 1 in the brack

eted term of (19) serves to isolate the singularity associated with the static problem of a
cracked plate strip infinite in the y-coordinate. This is readily seen to be the case since
Fm(O) -+ 0 by letting b -+ 00 and then letting 0 -+ O.

The dual series equations (18), (19) may be reduced to a single integral equation by
representing the unknown coefficients Pm by a finite Hankel transform

Pm = f: t<p(t)J ,(mt) dt,

where J ,(mt) is the Bessel function of the first kind and first order. By substituting Pm
into the first of the dual series equations, interchanging the order of summation and inte
gration, and using the identity

00

I J,(mt)sin(mx) = XC 1(t2 _X2 )-tH(t-x),
m=1,2,. ..

(23)

where H(t- x) is the Heaviside function, it is easily seen that (18) is automatically satisfied.
Equation (23) and all of the integral representations of series involving Bessel functions
used throughout this paper may be derived by appropriate contour integrations around the
first quadrant of the complex plane [1].

Integrating (19) once with respect to x and substituting (22) yields, after an interchange
in the order of summation and integration,

f: t<p(t) m= ~2' ... [1 + Fm(O)]J ,(mt) cos(mx) dt = 0,

By utilizing the integral representation

O:s;; x < c. (24)

00

I J,(mt)cos(mx) = t- 1 _XC 1(x2 _t2 )-tH(x-t)
m=1,2, ...

- 2 tOO [exp(2ns) _ 1r 1I 1(ts) cosh(xs) ds,

(25)
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equation (24) is put into the form of Abel's integral equation

J: cp(t)(x2
- t2 )-1 dt = h(x),

where

(26)

(27)
2 d ftcp(t) = - - xh(X)(t2 -x2 )-i dx.
n dt 0

1 1(ts) in (25) is the modified Bessel function of the first kind and first order. With the help
of certain identities found in [14J, the final result becomes

O:S;p:s;l,O(p) +{' K(p, r)O(r) dr = 0,

where O(p) = cp(ep). The kernel of the integral equation is written as

K(p, r) = e
2
rL= ~2 .... Fm(il)mJ l(mer)J l(mpc)

+2 tOO s[exp(2ns) -1] - t 11(rse)1 t(pse) dS} .

(28)

(29)

It should be remarked that (24) should include an arbitrary constant of integration as a
result of integrating (19) with respect to x. In the process of solving Abel's integral equation,
however, the arbitrary constant has no effect and may be ignored.

The singularity of M yy at the crack tip may be verified by considering the second dual
series equation (19), which represents M yy on y = 0, and by substituting equation (22)
written in the form

J
e d

Pm = -m- 1ccp(e)Jo(me)+m- t Jo(mt)-[tcp(t)Jdt.
o dt

It may be shown that in the vicinity of the crack tip,

(30)

(31 )

and thus the moment is square root singular near the crack tip which is in complete agree
ment with the references cited in the Introduction.

For the purpose of calculating the moment distribution along the uncracked segment,
it is convenient to write equation (19) in the form

d 00 00

M yyly= 0 ~ - dx)= Pm cos(mx)+)= mFm(illPm sin(mx). (32)
m-1,2,... m-1,2, ...

By substituting (22) into (32) and using the integral representation of (25), equation (32)
may be written as

mFm(illPm sin(mx), x > e, (33)



where

and
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K(x, p) = _ Cp 2[X2-C 2p2r t

+2p {OO [exp(2ns)-1]-[1[(cps)ssinh(xs)ds
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(34)

(35)Pm = c2 Lp8(p)J [(mcp) dp.

The moment field at points other than y = 0 can also be calculated but with a little more
difficulty. An expression for M yy on y > 0 can be written in the form

00

M yy -- L m[exp(-my) + Fm(n, y)]Pm sin(mx).
m= [.2 ....

(36)

For large y, the above series can be summed as it stands. For y « b, the series converges
too slowly because of the moment singularity. Therefore it is necessary to isolate the series
corresponding to the first term in the brackets and to substitute appropriate integral repre
sentations. A procedure for integral equations analogous to the one required here for
series equations was used by Sve and Keer [15] in calculating punch isochromatics.

(b) Antisymmetric vibration of plate with crack from one edge

The shape function is given by (4) and the coordinate system is shown in Fig. l(a).
Boundary conditions (10), (11) again hold and the boundary conditions on the line y = 0
are given by

a2w 02 W
M yy -- oy2 +VOX2 = 0, Y = 0,

oW 02W
W = - = - = 0 y = 0,ax ox2 '

(37)

(38)

y = 0, 0:::;; x < c. (39)

It should be noted that the above boundary conditions are also applicable for a plate
which is partly free and partly simply supported along the line y = O.

By applying (11) and (37), one is led to the relations

Am = -coth(r[b)Bm (40)

em = coth(r2b)Bm[kn+(l- v)m2 ]j[ -kn+(1- v)m2 J

Dm = -[ld1+(1-v)m2 ]Bm/[ -kO+(I-v)m2
].

(41 )

(42)

The mixed boundary conditions (38) and (39) lead to dual series equations given by (18)
and (19), but where Pm and Fm(Q) are given by

(43)
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and

(45)m = 1,2, ...

1+Fm(Q) = [m 3kQ(v+3)(v-l)r I{r l coth(r l b)[kQ-(1- v)m2]2

-r2coth(r2b)[kQ+(1-v)m2]2}. (44)

The first of the dual series equations for this case represents the condition 02 W / OX 2 = 0 on
y = 0 and c < x S n, which facilitates the introduction of the appropriate singularity at
the tip ofthe crack, but is not sufficient to insure that w = ow/ax = 0 on y = 0, c < x S n.
Hence, the auxiliary condition that ow/ax = 0 on y = 0 and x = n is imposed.

The appropriate representation for Pm which results in the proper singularity and
at the same time permits the auxiliary condition to be satisfied, is

Pm = EJ I(mc) + J: tq;(t)J I(mt) dt,

The constant E is determined by imposing

ow 00

ox(n,O) = L m-IPmcosmn = 0,
m= 1.2 •...

(46)

which leads to

E = J: tq;(t)k(t) dt, (47)

where

(48)

It can be shown that

Os t < n. (49)

Hence,

k(t) = - tic, (50)

and substituting E into equation (45) results in

m = 1,2, ... (51)

It is easily verified that the first of the dual series equations is automatically satisfied. By
the procedure indicated in the previous case, the second of the dual series equations leads to
(28) where

K(p, r) = c2rL= ~2 .... Fm(Q)[J I(mcr)- rJ I (mc)]mJ I(mcp)

+2 tOO [eXP(2nS)-lJ-I[II(SCr)-rII(SC)]SII(SCP)dS}. (52)
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The singularity of M xx at the root of the crack maybe verified in a manner analogous
to the symmetric case. It is easily shown that

00

Mxxly=o'" L Pm sin(mx).
m= 1.2 ....

Substituting (45) into (53) results in

00 Ie 00

Mxxly=o '" E _L J 1(mc)sin(mx)+ tcp(t) _L J 1(mt) sin(mx) dt.
m-1.2.... 0 m-1.2 ....

The first term in (54) results in

in the vicinity of the root of the crack along y = o.

(53)

(54)

(55)

(c) Symmetric buckling of plate with crack from one edge and uniform load on edges
perpendicular to crack

It is evident that the buckling problem can be obtained from the vibration problem by
redefinition of r 1and r2 according to equations (9) and by replacing kQ with mpy. Thus the
values of Am' Bm and Dm as given by (15)-(17) hold subject to this redefinition. The governing
dual series equations may be immediately written as [see equations (18)-(21)]

00

L Pm sin(mx) = 0,
m= 1.2 ....

c<x~n (56)

where

00

L m[1 +Fm(p)]Pmsin(mx) = 0,
m= 1.2 ....

o~ X < C, (57)

(58)

(59)

Solving the above dual series equations in the same manner as the vibration case results in
(28) where the kernel is given by

K(p, r) = c2rL=~2 .... Fm(p)mJ 1(mcr)J1(mcp)

+2 tOO S[eXP(2nS)-lJ-111(rSC)11(PSC)dS}. (60)

The difficulty with this result is that as m -. 00, Fm(p) -. 0 as m- 2 and hence the series in
(60) converges slowly. Since the series must be evaluated for each trial value of the parameter
p, it seems desirable to improve the convergence. By a procedure similar to that used by
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(61)O:s; x < c,

Sih and Loeber [16J in a problem involving a penny-shaped crack, the second of the dual
series equations may be written as

00 yZpzh(v)
L m[1 - Z + Gm(p)JPmsin(mx) = 0,

m;l,Z.... m +1
where

5vZ+2v+l
h(v) = 8(I-v)(3+v) (62)

and

(63)

(64)

It can be shown that as m -> 00, Gm(p) -> 0 as m- 4
. It seems reasonable to write the kernel

in the form

K(p, r) = czrL; ~z, ... Gm(p)J I (mcr)mJ l(mcp)-yZpzh(v) m; ~z [m
z+ lr 1

x J l(mcr)mJ I(mcp) + 2 tOO [exp(2ns) _1]-1 / I(crs)s/ l(pSC) dS} .

(65)

The second series in (64) coverges slowly. However, it need be calculated only once for
each crack length and therefore (64) provides a relatively efficient means of computing the
critical load parameter.

By means of a contour integration of

exp(inw)J I(tw) cos(xw)

(w z + 1) sin(nw)

around the first quadrant, the following identity can be derived:

00 foo J l(tU) cos(xu) duL [mZ+1]-lJI(mt)cos(mx) = Z 1
m;I.Z.... 0 U +

foo [exp(2nv)-lr 1/ I(tV) cosh(xv) dv
+2 .

o vZ-l

By use of (65) and with the help of an identity found in [14, p. 694J, the kernel of the integral
equation may be written in the alternative form

K(p, r) = czrL;Fz .... Gm(p)J l(mcr)mJ I(mcp)

+2 fooo [exp(2ns)-1]-I/ I(crs)s/ I(pcs) ds

[
II(Cr)KI(CP), p ~ rJ

-'/pZh(v)
K1(cr)/I(cp), r~p

+ 2yzpZ h(v) fooo [exp(2ns) -1] - I[SZ -1] - 1/ I(crs)s/ I(CPS) dS}.
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The above kernel requires the evaluation of a principal value integral. Since there is no
apparent advantage in its use, equation (64) was used for the numerical calculations.

PLATE WITH INTERNAL CRACK

In this section problems involving the vibration and stability of plates with an internal
crack will be considered, the geometry of which is given in Fig. l(b). Only the cases of vibra
tion and buckling symmetric with respect to the y-axis will be considered since the cases
that are antIsymmetric about the y-axis have essentially been solved in the preceding section
if the plate dimension is reduced by half.

If the plate is simply supported on all four sides, the corresponding boundary conditions
are expressed by

a2 w
Iyl ~ b,

n n
(66)w,~=o, x=

2'2ox

a2 w
Iyl = b,

n n
w'7JI = 0, -- < x <- (67)

y 2 - - 2'

In view of the above boundary conditions, the shape function is taken as the partial ex
pansion

00

w = I Ym(y) cos(mx),
m; 1.3 •...

(68)

where Ym(y) is given by (5).

(a) Symmetric-symmetric vibration of plate with internal crack

The first case to be considered is that in which the mode shapes are symmetric about
both coordinate axes. Considering the lower right-hand quadrant ofthe plate, the additional
boundary conditions resulting from the presence of the crack may be expressed by

(71)

(70)

(69)
n

O<x<- -2

°~ x < c.

y = 0,

y = 0,

a[a2
w 02W]

Vy '" oy oy2 +(2-v)ox2 = 0,

ow
oy = 0, y = 0,

02W 02W
M yy '" oy2 +v ox2 = 0,

By using equations (67) and (69) three relations may be found between the unknowns
Am' Bm, em and Dmand they are those given by (lSH17). The mixed boundary conditions
(70), (71) lead to the dual series equations

00

I Pm cos(mx) = 0,
m; 1,3, ...

(72)

00

I m[l + Fm(Q)JPmcos(mx) = 0,
m; 1,3, ...

o~x<c (73)

where Pm and Fm(Q) are given by equations (20) and (21), respectively.
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(74)

The representation for Pm, which introduces a square root moment singularity at the
crack tip, is given by

Pm = J: q>(t)Jo(mt) dt,

where Jo(mt) is the Bessel function of the first kind and zeroth order. It can be easily verified
that (74) satisfies the first ofthe dual series equations. Integrating the second of the equations
once with respect to x between the limits of 0 and x, and substituting (74) yields, after an
interchange in the order of summation and integration,

r 00JI q>(t) _?: [1 + Fm(n)]Jo(mt) sin(mx) dt = 0,
o m- 1.3 ....

0::;; x < c. (75)

By use of an integral representation for the first term in (75), it can be put into the form of
Abel's integral equation. With the help of identities found in [14J, the final result becomes
(28), where

K(p, r) = 2C2p{m= ~3 .... Fm(n)Jo(mcr)mJo(mcp)

+ tOO [exp(ns)+IJ lSIo(rSC)Io(PSC)dS}. (76)

(b) Symmetric-antisymmetric vibration of plate with internal crack

For this case, the boundary conditions which are applicable, in addition to those given
by (66) and (67), are

y = 0, (77)

ow
w=-ax y = 0, (78)

y = 0, 0::;; x < c. (79)

The above boundary conditions are derived from considerations ofthe antisymmetry of the
deflection function in the y-coordinate and the stress free state along the face of the crack.

The shape function is given by (68) and satisfies boundary conditions (66). Upon applica
tion of the boundary conditions (67) and (77), the three relations between the unknowns
Am, Bm, em and Dmare found to be given by equations (40H42). The mixed boundary
conditions above lead to the dual series equations

00

L Pm sin(mx) = 0,
m=1.3 ....

n
c<x<-2 (80)

00

L m2[1 + Fm(n)JPmcos(mx) = 0,
m= 1.3 ....

O::;;x<c (81)
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(82)

and where Fm(Q) is defined by (44). The first of the dual series equations above arises from
ow/ox = 0 on y = 0, c < x < 1£/2. This condition is used rather than the other two in (78)
because it permits the appropriate singularity at the crack tip to be introduced. However, all
conditions of(78) are automatically satisfied since the shape function equals zero at x = 1£/2.

The solution to the above dual series equations proceeds by taking the finite Hankel
transform of (22) as the appropriate representation for Pm. The first of the dual series equa
tions will be automatically satisfied. The second of the dual series equations is integrated
twice with respect to x. The first integration takes place between the limits of zero and x.
A constant of integration which appears with the second integration may be ignored for
reasons given earlier. With an appropriate contour integration and by use ofcertain identities
found in [14] the second ofthe dual series equations finally leads to a homogeneous Fredholm
integral equation of the second kind as given by (28). The kernel of this integral equation is
written as

K(p, r) = 2c
2
rL= F3, ... Fm(Q)J l(mcr)mJ I(mcp)

- tOO [exp(ns) + l]-III(rsc)sII(psc) dS} . (83)

(c) Symmetric-symmetric buckling of plate with internal crack and uniform load on edges
perpendicular to crack

The analogy between buckling and vibration has been pointed out earlier. The dual
series equations may be written down immediately as

00

L Pm cos(mx) = 0,
m= 1.3 •...

1£
c<x<-2 (84)

o~x<c (85)

where h(v) and Gm(p) are defined by (62) and (63). The solution to the dual series equations
may also be written by inspection. A homogeneous Fredholm integral equation of the
second kind is obtained as in (28) and the kernel is written as

00

_y2pZh(v) L (m2 + l)- IJo(mcr)mJo(mcp)
m= 1,3, ...

(86)
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NUMERICAL PROCEDURE AND RESULTS

Both the vibration and buckling problems have been reduced to the solution of a homo
geneous Fredholm integral equation of the second kind. The kernel of the integral equation
contains the unknown parameter being sought, e.g. the frequency offree vibration. Because
of the complexity of the kernel, the integral equation is treated numerically by reducing
it to a system of homogeneous algebraic equations using Simpson's rule. In matrix nota
tion, the integral equation may be written as

[I]{e} + [K(O)]{e} = 0 (87)

where [1] is the unit matrix and K(O) is the discretized kernel of the integral equation.
Defining

rA(O)J = [1] + [[((O)J, (88)

a nontrivial solution of (88) is found by searching for that value of 0 which causes the
determinant of the matrix A to vanish. The frequency factorfis related to the frequency 0
by

(89)

In all calculations the value of Poisson's ratio was 0·3 (v = 0·3).
The search procedure for finding the frequency is a trial and error process. First, a

crack length is specified and the matrix A of(88) is calculated for several values offrequency.
An estimate of the trial frequencies can be obtained by calculating the upper and lower
bounds, i.e. the uncracked and completely cracked cases, by use of standard techniques.
The determinantofthe matrix A corresponding to each value of the frequency is then com
puted. If the estimates of the trial frequencies are reasonably good, a change in sign of the
determinants would be observed and an approximate value of the frequency can be ob
tained by locating the crossing. Further trials can be used to pinpoint the value of the
frequency.

A very efficient technique for obtaining the frequency is Muller's iterative method [17J,
which is a quadratic interpolation scheme for finding the roots. It has been used for all of
the analyses presented here. Usually five or six evaluations of the matrix A were found to be
sufficient for an accurate determination of the frequency or buckling factors.

In the calculation of the matrix A of (88), the infinite series of the kernel were evaluated
to a relative error criterion of 1/5000, i.e. the series evaluation was terminated when the
ratio of the absolute value of the last term calculated to the absolute value of the sum of all
previous terms became less than 1/5000. Increasing the accuracy of the series evaluations
did not improve the final results. The integrand of the infinite integral in the kernel is a
monotonically increasing function up to some maximum. After the maximum is reached,
the integrand decays exponentially. Simpson's rule was used in the evaluation of the infinite
integrals and a sufficient number of intervals were used to ensure accurate results.

Another factor which affects the accuracy of the solution is the order of the matrix A.
The numerical results for the crack cases are tabulated in Tables 1-8 and were obtained
from eleventh-order matrices. For some crack lengths the fourth significant figure of the
frequency factor for the higher modes may not be accurate.



Vibration and stability of cracked rectangular plates 83

TABLE I. FREQUENCY FACTORS AND EIGENVALUE RATIOS FOR PLATE WITH CRACK FROM ONE EDGE.

VIBRATION MODES SYMMETRIC IN y. Y = 2·0

Mode 1 Mode 2 Mode 3

cln f ;.j)., f AlA, f AI)"

0·0 1·000(I)t 1·000 1·600(2) 1·000 2·600(3) 1·000
0·1 1·000 1·000 1·598 0·999 2·596 0·999
0·2 0·992 0·996 1·578 0·993 2·565 0·993
0·3 0·964 0·982 1·528 0·977 2·527 0·986
004 0·902 0·950 1·485 0·964 2·522 0·985
0·5 0·818 0·904 1·475 0·960 2·501 0·981
0·6 0·733 0·856 1·471 0·959 2-459 0·972
0·7 0·661 0·813 1·439 0·948 2·449 0·971
0·8 0·606 0·778 1·382 0·929 2-436 0·968
0·9 0·570 0·755 1·329 0·911 2·395 0·960
1·0 0·558(1) 0·747 1·308(2) 0·904 2·368(3) 0·954

t Numbers in parentheses indicate the number of semiwaves in the x coordinate.

TARLE 2. FREQUENCY FACTORS AND EIGENVALUE RATIOS FOR PLATE WITH CRACK FROM ONE EDGE.
VIBRATION MODES ANTISYMMETRIC IN y. Y = 2·0

Mode 1 Mode 2 Mode 3

c/n f ),IA, f AI)" I AI)·,

0·0 HOO(1)t 1·000 4·000(2) 1·000 5·000(3) 1·000
0·1 HOO 1·000 3·991 0·999 4·997 1·000
0·2 3·386 0·998 3·932 0·991 4·820 0·982
0·3 2·917 0-926 3-545 0·941 4·416 0·940
004 2·028 0·772 3·521 0·938 4·385 0·937
0·5 10492 0·662 3·416 0924 4·015 0·896
0·6 1·165 0·585 2·870 0·847 3·852 0·878
0·7 0·951 0·529 2·319 0·761 3·790 0·871
0·8 0·801 00485 1·915 0·692 3·371 0·821
0·9 0·692 00451 1·620 0·636 2·877 0·759
1·0 0·558(1 ) 00405 1·308(2) 0·572 2·368(3) 0·688

t Numbers in parentheses indicate the number of semi waves in the x coordinate.

TABLE 3. BUCKLING FACTOR VS. CRACK

LENGTH FOR PLATE WITH CRACK FROM ONE

EDGE. )' = 2·0

cln p

0·00 2·000(2)t
0·10 1·998
0·20 1·964
0·30 1·861
0040 1·744
0·50 1·652
0·60 J·583
0·70 ]·528
0·80 1·473
0·90 10428
1·00 1·394(1 )

t Numbers in parentheses indicate number
of semi waves in x coordinate.
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TABLE 4. FREQUENCY FACTOR vs. CRACK LENGTH FOR PLATE WITH INTERNAL CRACK.

VIBRATION MODES SYMMETRIC IN X AND SYMMETRIC IN y. Y = 1·0

Mode I(a) Mode I(b) Mode 3(a)

c/rr f f f

0·00 I·OOO(l)t 5·000(1) 5·000(3)
0·05 0·994 4·934 5·000
0·10 0·978 4·760 5·000
0·15 0·954 4·540 4·999
0·20 0·926 4·332 4·999
0·25 0·897 4·162 4·985
0·30 0·871 4·032 4·964
0·35 0·848 3·936 4·935
0-40 0·831 3·869 4·902
0·45 0·821 3-828 4·876
0·50 0·817(1) 3·814(1) 4·865(3)

t Numbers in parentheses indicate number of semiwaves in x coordinate.

TABLE 5. FREQUENCY FACTOR VS. CRACK LENGTH FOR PLATE WITH INTERNAL CRACK.

VIBRATION MODES ANTISYMMETRIC IN X AND SYMMETRIC IN y. " = 1·0

Mode 2(a) Mode 2(b) Mode 4

c/rr f f f

0·00 2·500(2)t 6·500(2) 8·500(4)
0·05 2·500 6·499 8·499
0·10 2·499 6·490 8-492
0·15 2·494 6·452 8·470
0·20 2-484 6·366 8-444
0·25 2·467 6·228 8·429
0·30 2·443 6·060 8·427
0·35 2·417 5·896 8-420
0-40 2·394 5·762 8·395
0·45 2·377 5·675 8·363
0·50 2·368(2) 5·625(2) 8·348(4)

t Numbers in parentheses indicate number of semiwaves in x coordinate.

TABLE 6. FREQUENCY FACTOR vs. CRACK LENGTH FOR PLATE WITH INTERNAL CRACK.
VIBRATION MODES SYMMETRIC IN x AND ANTISYMMETRIC IN y. Y = 1·0

Mode I(c) Mode 3(b) Mode I(d)

c/rr f f f

0·00 2·500(l)t 6·500(3) 8·500(1 )
0·05 2-499 6·498 8·494
0·10 2·491 6-463 8·392
0·15 2-456 6·288 7·890
0·20 2·362 5·656 7·143
0·25 2·180 4·827 6·842
0·30 1·924 4·326 6·672
0·35 1·652 4·085 6·467
0·40 1-407 3-971 6·149
0·45 1·192 3·909 5·700
0·49 1·007 5·235
0·50 0·817(1) 3·814(1) 4·865(3)

t Numbers in parentheses indicate number of semiwaves in x coordinate.



Vibration and stability of cracked rectangular plates

TABLE 7. FREQUENCY FACTOR VS. CRACK

LENGTH FOR PLATE WITH INTERNAL CRACK.

VIBRATION MODES ANTISYMMETRIC IN X AND
ANTISYMMETRIC IN y. Y = [·0

Mode 2(c)
cln f

0·00 4·000(2)t
0·05 4·000
0·10 4·000
0·15 3·997
0·20 3·982
0·25 3·938
0·30 3·829
0·35 3·626
0·40 3·330
0·45 2·983
0·50 2·368(2)

t Numbers in parentheses indicate number
of semiwaves in x coordinate.

TABLE 8. BUCKLING FACTOR VS. CRACK

LENGTH FOR PLATE WITH INTERNAL CRACK.

Y = 1·0

cln p

0·00 2·000(1)t
0·05 1·989
0·10 1·956
0·15 1·907
0·20 1·850
0·25 1·792
0·30 1·739
0·35 1·695
0·40 1·662
0·45 1·642
0·50 1·635(1)

t Numbers in parentheses indicate number
of semiwaves in x coordinate.
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(90)

The frequency factors for the plate with a crack from one edge are tabulated in Tables 1
and 2 as a function of crack length. The modes are numbered according to the number of
semiwaves in the x-coordinate. In addition to the frequency factors, eigenvalue ratios are
tabulated in order to facilitate a comparison with the figures given in Ref. [3]. The eigenvalue
A is related to the frequency factor f by

0= f(ir [1 +y2{~r = [~ ~:r·
The value As for each mode equals Aevaluated at c/n = O.

The solid lines on Figs. 2 and 3 represent the above tabular data in graphical form. The
dashed lines are taken from Ref. [3]. The maximum difference between the solid and dashed
line in mode 1 ofthe antisymmetric modes is about 11 per cent. Considering that the method
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FIG. 2. Frequency factors ys. crack length for plate with crack from one
edge. Vibration modes symmetric in y. y = 2·0.

FIG. 3. Frequency factor ys. crack length for plate with crack from one
edge. Vibration modes antisymmetric in y. y = 2·0.
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of Ref. [3] does not account for the singularity of the solution, the agreement between the
two methods with regard to the global quantities such as frequency is seen to be quite
reasonable.

For the symmetric vibration modes of the plate with a crack from one edge, relative
moment distributions were also calculated according to (33) and they are shown by the
solid lines on Figs. 4-6. Superimposed by the dashed lines are the moment distributions
taken from Ref. [3]. It is seen that good agreement exists away from the crack tip. Close to the
crack tip, however, the moment distributions differ quite drastically. This indicates that
even though global quantities such as frequency can be computed reasonably well by methods
which do not account for the singularity, it is extremely difficult to accurately compute
point-wise quantities such as the moment distribution in the vicinity of the point where the
boundary conditions are discontinuous. Finally, the contours of constant deflection for the
first three symmetric vibration modes are illustrated in Fig. 7.

The buckling factors for the plate with a crack from one edge are tabulated in Table 3.
Figure 8illustrates the buckling mode shapes for three different crack lengths. It is interesting
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FIG. 4. Moment distribution along uncracked segment C 1 for plate with crack from one edge. Vibration
modes symmetric in y. c1 = 0·31[, y = 2·0.
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1.0 1.0 0.5

0.0 -0.5 -1.0 -1.0 -0.5

~~

FIG. 7. Contours of constant deflection for symmetric vibration of plate with crack from one edge.
c = 0·5n, y = 2·0. Upper: mode 1; middle: mode 2; lower: mode 3.

to observe that when the crack length is small, the buckled shape has two semiwaves in the
x-coordinates. As the crack length increases, the buckled shape goes into one semiwave.

Tables 4-7 summarize the numerical results for the vibration modes of the plate with
an internal crack. The modes are numbered according to the number of semiwaves that
occur in the x-coordinate when the plate is uncracked. The letters behind the numbers
differentiate modes having different number ofsemiwaves in the y-coordinate. The buckling
factors for the plate with an internal crack are tabulated in Table 8.
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1.0 1.0 0.5 0.0

-7Jj)) (-)
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FIG. 8. Contours of constant deflection for buckling mode of plate with crack from one edge. Upper:
c = O·ln,}' = 2·0;middle:c = 0·5n,y = 2·0;lower:c = 0·9n,y = 2·0.
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A6cTpaKT-Pa6oTa paCCMaTpl1BaeT Bonpoc 1a)la'l Ha co6cTBeHHbie 1Ha'leHftll, KaCalDWI1XClI npllMOY
fonbHbIX njlaCTI1HOK C TpeWI1HaMI1. PewalDTclI 1<l)la'lH Kone6aHHll H YCTOll'lHBOCTl1, )lnll nnaCTl1HKH
C TpewHHoll, pacnpocTpaHlIlDweliclI OT Kpall H )lnll nnaCTHHKH c KOHueHTpH'leCKH pacnonoJKeHoll
BKYTpeHHeli TpewHHoli. 3a)la'll1 <!>opMynHpYIDTclI B <!>opMe ypaBHeHHll B napHblX Pll)lllX H CBO)lllTClI
K O)lHOPO)lHbIM HHTerpanbHblM ypaBHeHHlIM QJpeLl,fOnbMa BTOPOfO p0Ll,a. llnll KaJKLI,OfO cny'lall
BblLl,enlleTClI cHHfynllpHocTb peweHHlI H 1aTeM onpeLl,enlleTCll aHl1nHTH'leCKH. CpaBHHBalDTclI 'lHCneHHbIe
pe1ynbTaTbl Ll,nll co6cTBeHHbix 'laCTOT if pacnpeLl,eneHHe MOMeHToB, C pa60Toll Ll,PYfHX l1CCneliOBa
Tenell. I1nnlDcTpHpYIDTCll QJOPMbl Kone6aHHll H BbJllY'lHBaHl1l1 lInll nnaCTI1HKH C TpewHHoli.


